Modeling laser induced molecule excitation using real-time time-dependent density functional theory: application to 5- and 6-benzyluracil.
نویسندگان
چکیده
The fully propagated real time-dependent density functional theory method has been applied to study the laser-molecule interaction in 5- and 6-benzyluracil (5BU and 6BU). The molecular geometry optimization and the time-dependent electronic dynamics propagation were carried out using the M11-L local meta-NGA (nonseparable gradient approximations) exchange-correlation functional together with the def2-TZVP basis set. Different laser field parameters like direction, strength, and wavelength have been varied in order to estimate the conditions for an efficient excitation of the molecules. The results show that the two molecules respond differently to the applied laser field and therefore specific laser field parameters have to be chosen for each of them in order to get efficient and selective excitation behavior. It was also found that from the molecular excitation point of view not only the magnitude of the transition dipoles between the involved orbitals but also their orientation with respect to the laser field is important. On the other hand, it was shown that the molecular excitation is a very complex overlapping of different one-electron orbital depopulation-population processes of the occupied and virtual orbitals.
منابع مشابه
Structural Characteristics and Reactivity Relationship of some Thiophene Derivatives
ABSTRACT The application of many hetero-aromatic compounds in pharmaceutical and dye industries make the theoretical study of their dipole moment (µ) oscillator strength (f) and other photo-physical properties worthwhile. These properties determine the solubility of many compounds; predict the relationship between their structures, properties and performance. The f, µ, α, transition dipole mome...
متن کاملAbsorption of DCM Dye in Ethanol: Experimental and Time Dependent Density Functional Study
Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented ...
متن کاملAbsorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional
Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...
متن کاملModeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores.
The response of matter to external fields forms the basis for a vast wealth of fundamental physical processes ranging from light harvesting to nanoscale electron transport. Accurately modeling ultrafast electron dynamics in excited systems thus offers unparalleled insight but requires an inherently nonlinear time-resolved approach. To this end, an efficient and massively parallel real-time real...
متن کاملDensity Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery
Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2015